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1 Introduction
In investing, one has two major tasks: simultaneously trying to achieve increase in portfo-
lio value (maximize returns) and protect the portfolio from large sudden declines in value
(minimize the risk). These two objectives are however connected, e.g., to increase the ex-
pected returns, one must take additional risk. The trade-off between expected returns and
risk is chosen by the investor.

In reality, there is a great number of interrelated assets available for trading: stocks, bonds,
commodities, real estate, derivatives, and so on, which can be related to each other in some
way. One could pose a question: would it be possible to take advantage of the dependencies
between assets to reduce risks of the portfolio while still maintaining the desired level of
returns?

A seminalmilestone in portfolio optimizationwas laid byHarryMarkowitz in 1952 [1]. His
model considers the expected returns and volatilities of assets, as well as the covariances
between different assets. This model helps to find the portfolio of assets that has minimum
possible volatility while still yielding the desired level of expected returns.

The Markowitz theory does not account for external factors that are not visible in the as-
set sphere included in the model, as it assumes constant expected returns, volatility, and
cross-asset correlation. For example, changing inflation or economic activity cannot be ex-
pressed in the model just by changing parameters, but every single asset parameter should
be adjusted. For example, inflation affects various industries in a different way (e.g. raw
material producers versus end product manufacturers), so changes in inflation could affect
not only the expected returns and volatilities of the assets but also correlations between as-
set returns. Also, the optimal portfolio in the Markowitz model is very sensitive to input
data: with tiny changes in data, themodelmay suggest reinvesting large amounts ofmoney
for a tiny improvement in returns.

An advancement in portfolio optimization was the Black-Litterman model which deals
with so-called views [2]. The views are typically relative relations between two assets, and
they have uncertainty factors assigned to them. Now, the market data is processed and fil-
tered in a way that the views hold and we optimize the portfolio based on this data. The
Black-Litterman model also deals with the mean and variance of returns, and the uncer-
tainties of the views are assumed to be normally distributed. The Black-Litterman model
has a closed-form solution for the optimal portfolio and is very popular today.

The two models have been criticized because they assume that the portfolio’s risk is the
variance of returns. This means, e.g., that both greater and lower returns are marked as
risks, while only the lower returns should be avoided. [3] Thus, an investor would benefit
from being able to accommodate their definitions of risk. For more precise portfolio opti-
mization we should consider non-parametric distributions. A non-parametric distribution
captures a more precise picture of the market and it also handles outliers better.

In his paper, Meucci proposes a newmethod, called Entropy Pooling, which is based on the
Black-Litterman method but generalizes it to non-parametric distributions. [4] The paper
introduces the steps of forming a posterior distribution from the prior market distribution
that takes the views into account, but disrupts the prior distribution as little as possible.
This is accomplished by minimizing the entropy between the two distributions. The opti-
mal portfolio is solved numerically by Bayesian optimization and theMonte Carlomethod.
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However, the model has its drawbacks. For example, with extremely rare events, the poste-
rior distribution is formedwith a small amount of datawhich ultimately leads to inaccurate
results. All the models discussed here are based on historical data, i.e., they do not forecast
the market.

Portfolio optimization is a very much studied topic, and so it is very difficult to create port-
folios that would outperform the existing ones. However, wemay have information (views)
that help build better-performing portfolios. It is important to address the importance of
themethods of how the views are gathered from experts. When responding to certain types
of questions, humans are prone to show strong biases. Also, experts have different system-
atic biases that need to be tested and calibrated.

The client organization, Aktia Life Insurance, is interested in applying an Entropy Pooling
approach to its portfolio to manage its assets. For the client, a Python library performing
the Entropy Pooling and Markowitz optimizations to find an optimal asset portfolio (in
terms of expected returns and volatility) is created. This report focuses on themathematical
background of the procedure, its advantages, and drawbacks, as well as the results obtained
by the implemented program.

The rest of the work is structured as follows: Section 2 goes through themain concepts and
mathematics used in constructing the scenarios and views and then proceeds to explain
the entropy minimization and Markowitz portfolio optimization methodologies. Section
3 introduces the data used in this project and the implemented algorithm in more detail.
The results are discussed in Section 4, and Section 5 concludes.

2 Background

This section introduces the mathematical theory behind the entire Entropy Pooling and
portfolio optimization process. First, the concepts of scenarios and views are presented, and
both their meaning and notation are explained. Then, the idea of using Entropy Pooling
to adjust the probability distribution of the scenarios is shown. Finally, the Markowitz
portfolio optimization procedure, adapted for using the scenario data and probabilities, is
described. Figure 1 shows a simple flow chart of the program.

2.1 Assets and scenarios

Scenarios denote possible future changes in the value of factors, f ∈ F , which resemble
various indicators of a macroeconomic situation. In this setting, we assume F to be finite
and discrete. So, one scenario s ∈ S is the set {dfs : f ∈ F} that contains the changes in the
values of all factors that occur (more precisely, are expected to occur) simultaneously. Note
the units of d: for stock indexes, the unit is price changes in percentages, for bonds, absolute
change in the yield (must be scaled by 1/100 to get percentage points instead of base points),
and for other indicators (such as unemployment rate), the change in percentage points.
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Figure 1: A flow chart of the program. On the right-hand side, we have data provided by
the user, and on the left, the data is processed.

Table 1: An example of a factor scenario matrix (a subset of the data used in this project).

Scenario European EUR/USD US 10-Year Eurozone Core
Equities FX Rate Treasury Yield Inflation

1 5.42 0.28 6.58 0.40
2 –2.53 –1.90 –10.78 0.00
3 4.67 –0.19 6.48 0.30
4 –3.29 –1.94 17.85 0.50
5 2.18 –0.51 8.65 0.30

The factor scenario matrix is defined as follows,

SF =


d11 d21 . . . d

|F |
1

d12 d22 . . . d
|F |
2

...
... . . . ...

d1|S| d2|S| . . . d
|F |
|S|

 ∈ R|S|×|F |, (1)

where | · | represents the cardinality of the set. An exemplary subset of the real, much
larger factor scenario matrix is in Table 1. Each row represents one scenario, so this matrix
represents five future states of the world. In, say, future state (scenario) 3, the European
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equities would rise 4.67 %, the EUR/USD exchange rate would fall 0.19 %, the US 10-year
treasury yield would rise 6.48 basis points (corresponding to 0.0648 percentage points), and
the Eurozone core inflation measure would rise 0.3 percentage points.

To create the asset-specific return scenarios for theMarkowitz optimization phase, one can
use the information on the assets’ sensitivities to changes in the values of the factors. The
linearly approximated sensitivity of the value V of asset i ∈ N to a factor f is called the
delta of the asset,

∆f
i = ∂Vi

∂f
. (2)

Thus, the delta is simply the derivative of the asset valuewith respect to the factor. Note that
the asset may be sensitive to many factors simultaneously. Thus, we list the sensitivities of
all assets, i ∈ N , to all factors in a so-called delta matrix of dimension R|F |×|N |:

∆ =


∆1

1 ∆1
2 . . . ∆1

|N |
∆2

1 ∆2
2 . . . ∆2

|N |
...

... . . . ...
∆|F |1 ∆|F |2 . . . ∆|F ||N |

 . (3)

Table 2 shows an example of an asset delta matrix for four factors and three assets. The
factors are as inTable 1. The sensitivity ofNokia stockwith respect to theEuropeanEquities
Index (a proxy for the market) can be understood as its CAPM beta. The changes in the
value of aUSD cash position are inversely proportional to the changes in the FXRate (rising
EUR/USD rate implies a depreciation of the dollar). The relative bond price sensitivity to
changes in the yield is obtained as the negative of themodified duration. Modified duration
is defined as−(∂V/∂y)/V , where V is the bond value and y is the yield, so it is the negative
of the percentage change of the bond value with respect to changes in yield. Also note,
that in this linear approximation, none of the assets are directly dependent on Eurozone
inflation rates.

Table 2: An example of the asset delta matrix.

Factor Nokia USD US 10-Year
Stock Cash Treasury Note

European Equities 0.7 0 0
EUR/USD FX Rate 0 –1 0
US 10-Y Tr. Yield 0 0 –10
Eurozone Inflation 0 0 0

In this case, the returns of the asset iwith respect to changes in all factors in a scenario s is

ris =
∑
f∈F

dfs∆
f
i . (4)

Note that this summation corresponds to the dot product of the row s of SF and column
i of ∆. Thus, the scenarios of all assets in all scenarios can therefore be represented very
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conveniently as a matrix product of SF and∆. We call the |S|-by-|N | product matrix asset
return matrix R,

R = SF∆ =


r11 r21 . . . r

|N |
1

r12 r22 . . . r
|N |
2

...
... . . . ...

r1|S| r2|S| . . . r
|N |
|S|

 . (5)

The matrix product of Tables 1 and 2 is in Table 3. The table should be interpreted the
same way as the factor scenario matrix, but now all elements are percentage returns: for
example, in scenario 3, Nokia stock would rise 3.27 %, USD cash position would appreciate
0.19 %, and a 10-Year US T-Note would lose 0.65 % of its value.

Table 3: An example of an asset scenario matrix.

Scenario Nokia USD US 10-year
Stock Cash Treasury Note

1 3.79 –0.28 –0.66
2 –1.77 1.90 1.08
3 3.27 0.19 –0.65
4 –2.30 1.94 –1.79
5 1.53 0.51 –0.87

Wemust highlight that this is only a linear approximation, and in real life, the dependence
between assets and factors may be nonlinear. Also, possible multicollinearity between the
factors causes errors in the estimates of R. The responsibility of detecting and addressing
multicollinearity is left to the user.

2.2 Views
In addition to the scenarios, the user can specify certainmarket characteristics he/she finds
important. For example, the user may think that a given factor has some expected future
value or volatility, or two factors exhibit a given level of correlation. These kinds of expec-
tations, called views, could be e.g. reflected in current market prices of assets. Examples of
views are:

1. The annual expected return of the European equities index is 5 percent.

2. The annual expected volatility of the European equities index is less than or equal to
the annual volatility of Global equities minus 10 percent.

3. The correlation between European equities and global equities index returns is 0.9.

We allow various types of views: mean, volatility and correlation. Furthermore, we admit
equality and inequality views, and absolute and relative views. The user inputs the views
data in a spreadsheet format and the figures are given in the annual form. Detailed filling
instructions and examples are provided in Appendix A. Even though we are keen on pro-
viding a user-friendly interface for the user, the user needs to be very careful when dealing
with the views.
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2.3 Entropy minimization
The fundamental idea of the entropy minimization approach is to use prior knowledge
of the probability distribution of scenarios (prior distribution) and additional information
about possible future outcomes (views) to find an adjusted probability distribution (pos-
terior distribution) that deviates as little as possible from the prior one. The measure (or
proxy) of deviation between the two distributions is called relative entropy, or Kullback-
Leibler divergence [5]. The expression of relative entropy is frequently used, e.g., in the
field of information theory. It can be expressed either in continuous or discrete form,

HC(p, p′) =
∫
S
p(s)

(
ln p(s)− ln p′(s)

)
ds, (6)

H(p, p′) =
∑
s∈S

ps(ln ps − ln p′s). (7)

So, the problem of finding the entropy-minimizing distribution p using the prior distribu-
tion p′ and the views Ap ≤ b can be expressed as

min
p

H(p) (8)

s.t. Ap ≤ b, (9)
ps ≥ 0, ∀ s ∈ S, (10)

where notation H(p) highlights that the objective function is a function of the posterior
distribution only. The inequality in Ap ≤ b, applies to each row independently. The con-
straint equation Ap ≤ bmust contain

∑
s∈S ps = 1 to ensure that p satisfies the properties

of a discrete probability distribution.

The complexity of this optimization problem depends on two factors: the number of sce-
narios (|S|) and the number of constraints (|Λ| with Λ being the set of constraints). The
number of scenarios is likely much higher than the number of constraints, thus making
it beneficial to use a dual of the problem which reduces the number of decision variables
from |S| to |Λ|.

We start by forming the Lagrangian function, which combines the constraints and the orig-
inal objective function,

L(p, λ) = H(p) + λ⊤(Ap− b) = p⊤(ln p− ln p′) + λ⊤(Ap− b), (11)

where ln x = [ ln x1 ln x2 · · · ln xS ]⊤.

The solution to the original problem is found by minimizing the Lagrangian function with
respect to p and λ jointly. The function is now unrestricted with respect to p, but we have
λ ≥ 0, since the Lagrangian function penalizes the violation of the constraints Ap − b ≤
0, and any violation (Ap − b > 0) must increase the value of the objective (Lagrangian)
function.

Now that the Lagrangian function is obtained, we transfer the problem into dual space.
The dual objective function isD(λ) = L(p∗(λ), λ), where,

p∗(λ) = argmin
p

L(p, λ). (12)
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In other words, D(λ), is the value of the Lagrangian when it is minimized with respect to
p, with a fixed λ. So, the summation H(p), can be represented more compactly as a dot
product.

As derived in [4], the value of pminimizing the Lagrangian function is

p∗(λ) = exp{ln p′ − 1− A⊤λ}, (13)

where the exponentiation is defined as exp{x} = [ exp{x1} exp{x2} · · · exp{xS} ]⊤.
Due to the property of exponential function exp{x} > 0, ∀x ∈ R, the constraint p ≥ 0, is
satisfied by default. Thus, the dual function itself becomes,

D(λ) = p∗⊤(λ)(ln p∗(λ)− ln p′) + λ⊤(Ap∗(λ)− b)
= exp{ln p′ − 1− A⊤λ}⊤

(
ln exp{ln p′ − 1− A⊤λ} − ln p′

)
+ λ⊤(A exp{ln p′ − 1− A⊤λ} − b),

(14)

which simplifies to,

D(λ) = exp{ln p′ − 1− A⊤λ}⊤(−1− A⊤λ) + λ⊤(A exp{ln p′ − 1− A⊤λ} − b). (15)

Now, the dual optimization problem can be formulated as

max. D(λ) (16)
s.t. λ ≥ 0, (17)

If the original problem is convex, the primal and dual problems have the same optimal
point and value of the objective function. This is the case in our problem, as H(p) is con-
vex and the feasible set is also convex, due to linear constraints. Once an optimum λ∗, is
obtained, the corresponding optimal value of the primal decision variable p∗ is recovered
using equation (13).

The dual problem can be solvedwithmany optimization algorithms. Many of them require
the gradient ofD(λ), which can be represented analytically,

∇D(λ) = ∇
(
p∗⊤(ln p∗ − ln p′) + λ⊤(Ap∗ − b)

)
= (1+ ln p∗)⊤∇p∗ − ln p′⊤∇p∗ + Ap∗ + (A⊤λ)⊤∇p∗ − b,

(18)

where,
∇p∗ = J(p∗) = −diag(exp{ln p′ − 1− A⊤λ}A⊤, (19)

is the Jacobian matrix of p∗(λ) evaluated for λ. The equation above is not provided in [4],
but plays a crucial part in the optimization algorithm.

The optimization problemwill be solved using a truncated Newton (TNC) conjugate gradi-
ent algorithmwhich is an iterative algorithm that is able to solve high-dimensional nonlin-
ear optimization problems [6]. Further consideration of a suitable algorithm is out of the
scope of this project, but it is worth highlighting that the TNCalgorithmallows for bounded
decision variables, and it employs quadratic approximation of the objective function which
usually implies relatively fast convergence.
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2.4 Converting the views to linear constraints
The program converts the views data to optimization constraints which are used in entropy
minimization. Furthermore, we only allow linear constraints. For views regarding mean
values, the linear constraints are trivial to form. Consider a set of scenarios xs of the value
of an asset x, and weights ps, where s ∈ S. Consider that we’d like to set the mean value of
x to µx, which is provided by the user. This yields a linear equation,∑

s∈S
psxs = µx,

which we can use with entropy minimization. A relative mean view between options xs

and ys, s ∈ S, is rather easy to formulate to a linear form,∑
s∈S

psxs −
∑
s∈S

psys = µxy ⇐⇒
∑
s∈S

ps(xs − ys) = µxy.

However, problems arise with variance and covariance views,∑
s∈S

ps(xs − x̄)2 = σ2
x,

where x̄ is a weighted average,
x̄ =

∑
s∈S

psxs.

The equation is no longer linear, but note that by fixing x̄, the equation becomes linear
in ps. The user may provide x̄, in which case no approximations are needed. In the case
where the user does not provide x̄, we fix the value anyway, to a value that is close to the
prior mean value of xs, and satisfies all the views regarding mean values. We do a similar
maneuver with correlation, for which both mean and variance are fixed.

The user defines the risk as standard deviation instead of variance. Relative volatility raises
yet another problem, because squaring both sides,

√
sx −

√
sy = σxy =⇒ sx − 2√sxsy + sy = σ2

xy,

yields an additional term, 2√sxsy, which is not present with absolute volatility. We approx-
imate the term linearly in Appendix B, which yields the following approximation,

σ2
xy ≈

∑
s∈S

ps

(
(xs − x̄)2 + (ys − ȳ)2 −

(xs − x̄)2σ2
y + (ys − ȳ)2σ2

x

σxσy

)
,

where σx and σy are prior volatilities.

2.5 Markowitz portfolio optimization
To optimize the portfolio based on the posterior scenario probabilities, we use the
Markowitz model, introduced by Harry Markowitz in 1952 [1]. The model is based on
the following assumptions:

1. The risk of the portfolio is based on the variability of the returns of the portfolio.

2. The investor is risk-averse.
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3. As a result, the investor’s utility function is concave and increasing.

4. The investor favours increased consumption.

5. The analysis only takes into consideration a single period of investment.

6. The investor is rational.

With the model, we can, e.g., look for solutions that are optimal at some given risk level or
return level. In this project, we minimize risk at a fixed minimum expected return level,
which is defined by the user. However, the implementation can accommodate different
strategies with fairly minor modifications to the code.

We model the problem as a quadratic optimization problem,

min. x⊤Σx (20)

subject to:
N∑
i=1

xi ≤ 1 (21)

µ⊤x ≥ µ0 (22)
xi ≥ 0, ∀i, (23)

where x is a decision vector containing the resources allocated to each asset i. The vector
x is also referred as weights. The vector µ contains the expected returns for each asset, Σ
is the covariance matrix (or cross-correlation matrix) of the assets, and µ0 is a minimum
level of return, which is treated as a constant.

The objective function, see Equation (20), is the total variance of the portfolio’s returns.
Alternatively, we could minimize standard deviation (or, in this case, volatility) instead
of variance. This yields an equivalent problem since taking a square root is a monotonic
operation. Often, minimizing variance is less complex.

Equation (21) describes the constraint to keep the sum of the weights below one, i.e. not
to use more resources than available (one would expect that all resources are used but we
allow for this possibility as well). Equation 22 sets the minimum level of expected return.
Since Equation (20) is a second-order equation and Equations (21)-(23) form half-spaces,
the optimization problem is a convex problem. This important result ensures that a nu-
merically found local minimum is a global minimum.

To solve the optimization problem, we use a quasi-Newton method, Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno method with box constraints (L-BFGS-B) [7]. This method
is natively implemented in SciPy which is convenient. Again, the testing of alternative
optimization methods is out of this project’s scope.

The model can be modified to accommodate additional constraints and modifications. Al-
terations considered in this project are listed below.

1. Short positions. This is achieved by either removing constraint (23) (short positions
in all assets are allowed) or relaxing it as,

xj ≥ 0, ∀j ∈ J,

where J is the set of asset for which short positions are not allowed.
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2. Minimum and/or maximum position levels for individual assets or a subset of assets.
This is represented as

cK ≤
∑
i∈K

xi ≤ cK ,

where the setK represents the asset subset, and cK and cK are the given limits. With
many such constraints, it is possible to form conflicting position requirements, which
implies an infeasible optimization problem.

3. Including assets that do not require any capital invested at present time, such as
swaps. Such assets can be included in theMarkowitzmodel by altering the constraint
(21) as follows, ∑

i∈{1,...,N}\M
xi ≤ 1,

whereM represents the set of assets where no initial capital is invested.

TheMarkowitz optimization, ormodel, can also be viewed in a differentway. The following
steps lead to the same result as the above convex optimization problem. First, we take all
the possible portfolios given our available assets, visible in 2a, an example is illustrated in
Figure 2b. We then find those that have the lowest risk for each given return level. These
portfolios define the efficient frontier, visible in Figure 2c. Finally, we choose a portfolio
that satisfies our needs, e.g. at a certain return level. The final result, where the risk level
µ0 is set to 0.5, can be seen in Figure 2d.

An important extension to the Markowitz mean-variance portfolio model is the inclusion
of a risk-free asset that has zero volatility [8]. In this model, the optimal portfolios are
convex combinations of the risk-free asset and an asset portfolio that maximizes the so-
called Sharpe ratio. In this project, we donot consider risk-free investments. This is because
the project’s client is a bank and thus does not have the same freedom with risk-free assets
compared to, e.g., a private person. Ultimately, a risk-free asset is a theoretical concept (or
an approximation), because even the usual proxies used as risk-free investments (e.g., US
government bonds) include some yield risk and thus their future value is not certain, in
case an asset is not held all the way to its maturity.
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(a) The original assets plotted in the asset
space.

(b) A blue cloud of dots representing the lin-
ear combinations of the assets.

(c) A red line, displaying the efficient fron-
tier, added to the previous picture. (d) The optimal portfolio plotted at some µ0.

Figure 2: A series of plots, using a random scenario space, to describe the Markowitz opti-
mization.
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3 Data and methods

3.1 Input data
The code relies heavily on data given by the user. The user gives the following input ma-
trices in Excel sheets: factor scenarios, views, asset deltas, and constraints for Markowitz
optimization. In this project, the inputs are provided by the client. All of the provided data
used in this project is simulated mock data, and it does not represent real historical data,
real opinions nor expectations, or any sensitive information possessed by the client.

The factor scenario matrix provided by the client has dimension 252 × 36. That is, it in-
cludes 36 factors and 252 scenarios. The factors include major stock indexes (European,
American, global, and emerging market equities), interest rates (US Treasury notes, Ger-
man Bonds, European corporate bonds, swap rates, and the like), and major macroeco-
nomic indicators such as EU and USA unemployment and inflation rates. The original
data denotes monthly changes, but the values have been annualized by Aktia already.

3.2 Views
In total eight viewswere used to test their effect on the entropy-minimizing posterior distri-
bution. The views are listed in Table 4, and an example input Excel sheet is shown in Table
5. In this problem setting, only inequality type constraints for expected values of changes in
factors were considered. It was concluded that taking views regarding standard deviations
or correlations of factors was not of great importance. Changes in posterior probabilities
induced by enforcing a single view were considered a good approach for sensitivity analy-
sis. In fact, trying out different views and their effect on the optimal portfolio allocation is
one of the purposes of performing the entire Entropy Pooling procedure.

Table 4: The views that were used to find entropy-minimizing posterior distributions. The
operator µ stands for expected value of change in factor value (absolute change or return
depending on factor type). All the right-hand side numbers correspond to annualized re-
turns or changes measures in percentage points (pp) or basis points (bp).

View name Explanation

Rates up µ(Germany 10 Yr. Govt. Bond Yield) ≥ 2.5 bp
Rates down µ(Germany 10 Yr. Govt. Bond Yield) ≤ −2.5 bp
Equities up µ(Global Equities) ≥ 1 %
Equities down µ(Global Equities) ≤ −1 %
Inflation up µ(Eurozone Core Inflation) ≥ 0.1 pp
Inflation down µ(Eurozone Core Inflation) ≤ −0.1 pp
VIX up µ(iVol US Equities) ≥ 1 pp
VIX down µ(iVol US Equities) ≤ −1 pp

Table 5: Example views Excel sheet, for the case Equities up.

* View on * Risk factor 1 Risk factor 2
(applicable for corr) * Operator * Constant

(alpha)

Mean Global Equities - > 1 %
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3.3 Example Portfolios
We next describe two example portfolios with different assets and additional constraints.
These portfolios are later optimized using different distributions.

3.3.1 Example Portfolio 1

The first example portfolio used for analysis consists of three assets: a European govern-
ment bond portfolio, a European investment-grade corporate bond portfolio, and a Euro-
pean 5v5 swap agreement.

The asset delta matrix used here is shown in Table 6. Note that the deltas with respect to
bond indexes are not computed using themodified duration aswas done in Table 2, as these
two bond indexes are denoted in terms of total percentage returns instead of yield. (That is
the case with US 10-year treasury notes. This is simply a peculiarity of the given data).

Table 6: The asset deltamatrix of Example Portfolio 1. The column ‘Other Factors’ specifies
that none of the assets has a nonzero delta with respect to any of the remaining 33 factors.

Factor European European European Other
Govt. Bonds Corp. Bonds 5v5 Swap Factors

EUR Govt. Bonds 1 0 0 0
EUR Inv. Grade Corp. Bonds 0 1 0 0
10Y EUR SWAP 0 0 2 0
5Y EUR SWAP 0 0 –1 0

The following constraints were included to specify certain requirements that the portfolio
manager might want to take into account:

1. The amount of capital invested in the European government bond portfolio must be
between 0.5 and 1 million Euros.

2. The amount of capital invested in the European corporate bond portfolio must be
between 0 and 0.5 million Euros.

3. The total amount of capital invested in both bond portfolios must be equal to one
million Euros.

4. The notional capital of the 5v5 swap agreementmust be between 0 and 100,000 Euros
(1,000 Euros per basis point).

These constraints are represented in matrix form as, b ≤ Ax ≤ b, where,

A1 =


1 0 0
0 1 0
0 0 1
1 1 0

 , b1 =


500,000

0
0

1,000,000

 , b1 =


1,000,000
500,000
100,000
1,000,000

 . (24)

3.3.2 Example Portfolio 2

The second example portfolio to be tested consisted of 13 factors that could be understood as
index assets, plus two derivatives contracts that have fixed positions. So, each ‘normal’ asset
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has a unit delta with respect to itself (when considered as factors), whereas all cross-deltas
are zeros. The derivative assets have nonzero deltas with respect to multiple swap rates but
not to other factors. These two assets do not require capital investment beforehand, but
their future value depends on the changes in the swap rates.

The following constraints were used for the normal assets, already expressed in matrix
form:

An =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1



, bn =



0
0
0
0
0
0

83,400,000
0
0
0
0
0
0

417,000,000
0
0



, bn =



41,700,000
41,700,000
41,700,000
41,700,000
41,700,000
417,000,000
417,000,000
417,000,000
125,100,000
41,700,000
62,550,000
41,700,000
41,700,000
417,000,000
41,700,000
41,700,000



.

(25)
So, the constraints specify lower and upper limits for all positions, plus the total capital
at hand (417 million EUR) as well as two constraints specifying minimum and maximum
amounts than can be invested together in assets 1 – 5 and 12 – 13, respectively.

The positions in the derivatives are fixed (specifying that both of them denote a single spe-
cific derivatives contract), and they do not affect the position constraints of the other assets.
The constraints of the entire portfolio can be expressed by augmenting the constraints spec-
ified earlier:

A2 =

An 0 0
0 1 0
0 0 1

 , b2 =
bn1
0

 , b2 =
bn0
1

 , (26)

where An, bn and bn are defined in (25).

3.4 Algorithm
The code was implemented using Python 3. To solve the optimization problems, packages
cvxopt and scipy.optimize were used. A flow chart of the package is shown in Figure 1,
and the rough structure of the code package is as follows:

1. Script file main.ipynb. It uses the function files to perform the entire Entropy Pooling
procedure and prints the results and visualizations for the user.

2. Function file views.py, containing functions needed to upload factor scenario data
and views specified by the users and to process this data into constraints used in en-
tropy minimization.
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3. Function file entropy_minimizer.py, containing the functions for performing the
entropy minimization task.

4. Function file markovitz_optimizer.py, containing the functions for uploading asset
delta matrix, computing the asset scenarios, and finally performing the Markowitz
optimization and visualization of the results.

The code (not including the data) will be publicly available on GitHub. Please refer to the
authors to get the Internet address.

4 Results

4.1 The posterior distributions
Theposterior distributions are seen inFigure 3. The views are described inTable 4, and they
are enforced one view at a time. In the Figure, we see that even a single view can produce
highly polarized posterior weights, in which case the posterior relies on a very small data
set. This means, that the further results computed with the posterior may be unreliable.
In fact, the subsequent portfolio optimizations frequently failed when the Rates down view
was used. The prior and posterior distributions of the view Inflation up are equal, as is seen
in the Figure. This is because the prior distribution already satisfies the view condition.
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Figure 3: Sorted posterior distributions. Themore the posterior deviates from the prior dis-
tribution, the fewer scenarios are ‘active’. In the case Rates down, the posterior distribution
is dominated by only a handful of scenarios.
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4.2 Optimal portfolio allocation

4.2.1 Example portfolio 1

The expected returns and volatility of the optimal portfolio are shown in Figure 4. For this
optimization task, the view Equity up was active. The optimal portfolio holdings are listed
in Table 7. The expected return and volatility of the optimal portfolio are 0.36 % and 0.98
%, respectively. The magnitude of the numbers deviates from those often seen in textbook
examples (tens of percents), but this is explained by the factor scenario data.

The properties of the optimal point become evident when it is compared with the convex
combinations of the two bond assets (red curve). The swap thus enables the investor to
achieve a level of volatility unattainable for portfolios consisting of just the two bond assets.

Figure 4: The volatility and expected returns of the optimal allocation (red point) plotted
togetherwith the individual assets excluding the swap (brownpoints). The blue point cloud
represents all portfolios that satisfy the constraints (24), and the dark red curve represents
the volatilities and returns of the two bond assets’ convex combinations.

Table 7: The asset positions in the optimal portfolio of example 1.

Asset Position (€)
EUR Govt. Bonds 500,000
EUR Inv. Grade Corp. Bonds 500,000
EUR 5v5 Swap 100,000

4.2.2 Example portfolio 2

Figure 5 shows the composition of the minimum volatility portfolios, for each view. The
view Rates down was discarded, as the optimizer was not able to find any solutions with
a positive expected return. The positions taken in hedge funds and listed private equity,
change noticeably between different views. Otherwise, the portfolio compositions do not
vary much, because of the constraints used in the Markowitz optimization. The volatilities
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and expected returns of the minimum variance portfolios of each view are shown in Table
8. Interestingly, the volatilities do not vary very much while there is a significant deviation
between the expected returns.
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Figure 5: The asset compositions of the minimum variance portfolios, for each view. The
view Inflation up yields the prior distribution, see Figure 3.

Table 8: The volatility and expected return of the minimum variance portfolios, when dif-
ferent views were enforced on the probability distribution. For reference, the values for
the portfolio, optimized using the prior distribution, are also shown on the first row of the
Table.

View Volatility (€) Expected return (€)

Prior 74,323 22,455
Rates up 65,764 10,351
Eq up 68,788 25,083
Eq down 72,441 10,380
Inflation up 74,323 22,455
Inflation down 64,052 23,742
Vix up 71,495 15,907
Vix down 65,687 25,515

Theminimumvariance portfolio, obtained using the viewEquity up, is in Figure 6. Another
portfolio was optimized with a pre-set minimum expected return of 2 million Euros, or
around 0.48%.

The blue point cloud represents 5,000 randomly chosen feasible portfolios. We see that the
constrained minimum variance portfolio does indeed have smaller volatility than any of
the simulated sets. So, both optimal portfolios lie on the efficient frontier as supposed. It is
noteworthy that one asset, MoneyMarkets, has even smaller volatility. This is understand-
able, as the portfolio constraints prevent one from freely choosing any possible combination
of the assets.
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Figure 6: The volatility and expected return of two efficient portfolios (the red points). One
is the minimum variance portfolio, and the other stands for an optimal portfolio with pre-
set minimum expected return. The individual assets (not including the derivatives) are
shown in brown. A randomly simulated set of 5,000 feasible portfolios is shown by the
blue point cloud.

Figure 7 shows the portfolios on the efficient frontier in the case of the Rates up -view. The
graph is quite stable across the frontier, with some fluctuation. Graphs for the remaining
views are in Appendix C.
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Figure 7: A stacked bar graph of portfolios at an efficient frontier, as a function of expected
return.
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5 Discussion

In this project, the Entropy Pooling approach was implemented for testing purposes for
the client, Aktia Life Insurance. The implementation works and may provide precise and
versatile asset handling. The example views and example portfolios produced different
results providing a good overview.

Handling of awide variety of different assets was successfully implemented in the program.
However, an issue related to the factor scenarios, which was deemed to be out of the scope
of this project, was the effect of the different units of the factor on the subsequent entropy
minimization process. Namely, factors quoted in basis points, whichmight thus havemuch
larger values than factors quoted in percentage returns or percentage points. It would be
an interesting future extension to the implementation to study the effects of standardizing
all the factor returns so that they have all zero mean and unit variance.

There is a very important caveat in the delta approach when constructing the asset-wise
return scenarios. For example, if a portfolio consisting of several European assets is used,
and all the asset returns are assumed to only depend on a single factor (European Equities
in the input data used in this project), the asset-specific risk factors and differences in cross-
asset correlations would be totally neglected. On the other hand, exhaustively modelling
each asset’s dependence on other factors likely makes the model overly complex and the
user would consider it too tedious to update the delta matrix accurately. This is why one
should conclude that this approach is best suited for portfolios consisting of asset indexes
and other such instruments.

A known shortcoming of the Markowitz optimization theory is that the data (means, vari-
ances, and correlations of the asset returns) needs to be very precise. For most practical
cases, the model is too sensitive. Instead, one could employ some more advanced assump-
tions on the behaviour of the assets, for example, a Bayesian approach to approximate the
uncertainty of the parameters and, additionally, use higher moment knowledge [9]. We
speculate, that together with the Entropy Pooling approach, one could achieve very good
predictability.

One cannot emphasize too much the importance of accurate, reliable, and well-formatted
input data in the results. Seemingly small errors, such as confusing bond yield units (per-
cent versus basis point), or the notion of quoting bond yields instead of price returns, could
hamper the results. Thus, it is crucial that the user understands these issues and makes
sure that the data is exactly as required.

Even if the input data is correct and well gathered, the results may be unreliable, e.g., in
the case of Rates down, see Figure 3. Information is always lost during the data processing,
and the user must be aware of this fact. A numerical measure (or estimate) for ‘active’
points in the posterior distribution could be used to warn the user whenever the posterior
distribution is dominated by just a few scenarios.

Relative entropy is a measure of dispersion, but not the only one used in mathematics. For
example, Kolmogorov–Smirnov distance [10] could be used as well. An advantage of using
entropy is the easy formulation of a dual optimization problem. Still, the choice of entropy
seems rather arbitrary, and it might be hard to give any real-life justifications for choosing
this measure over the others.
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The conversion from views data to linear constraints turned out to be quite tedious and the
results rely on approximations. The problem could be avoided by iterated optimization or
with an optimization model that deals with specific non-linear constraints. Formulation
of such a model is left for future research.

To summarize, the results obtained using the Entropy Pooling and Markowitz approaches
should not be seen as the only viable approach when optimizing a portfolio. Instead, the
methodology should be seen rather as a tool for exploring the effects of changing market
scenarios and views on the Markowitz-optimal portfolio composition. The implemented
approach is, however, an improvement over using more simpler models.
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A Views filling instructions

This section is copied from the code documentation.
In this code library, views can be given for mean, volatility and correlation. Views can be absolute or relative, and they can be equalities or inequalities. All numbers are
given in annual units. Each view is filled as its own row, and the number of rows is only limited by Excel.

Minor mathematical note: The strict inequality signs in the Excel act as ≤ and ≥ in the program.

Mean values

Example: We want to set the mean of Eurozone Core Inflation to 1 % (annual). This is filled as follows,

* View
on * Risk factor 1 Risk factor 2 (applicable

for corr)
*
Operator

* Constant
(alpha)

Multiplier
(beta)

Risk
factor 3

Risk factor 4 (applicable
for corr)

Mean Eurozone Core
Inflation = 0.01

Note, that Excel will show 0.01 as 1 %, if percentage units are used. By leaving blank cells (or dash -), the program knows that we're dealing with an absolute view.

Example: Eurozone Core Inflation is at least 1 % (annual) greater than US Core Inflation. This is filled as follows,

*
View
on

* Risk factor 1 Risk factor 2 (applicable
for corr)

*
Operator

* Constant
(alpha)

Multiplier
(beta)

Risk factor
3

Risk factor 4
(applicable for corr)

Mean Eurozone Core
Inflation > 0.01 1 US Core

Inflation

If a given multiplier is a dash (-), or the cell is left blank, the multiplier is interpreted as 1. The multiplier acts on the Risk factor 3 (and Risk factor 4 in the case of a
correlation view). In mathematical terms,

The equality sign can be changed to < or > if needed.

Volatility

Filling volatility views is analogous to filling mean values. The left-most column is changed from Mean to Vol. The volatilities are also filled with annual units.

Correlation

Only with correlation, are Risk factor 2 and Risk factor 4 used.

Example: The correlation between Eurozone Core Inflation and US Core Inflation is greater than 0.8. This is accomplished below,

* View
on * Risk factor 1 Risk factor 2 (applicable

for corr)
*
Operator

* Constant
(alpha)

Multiplier
(beta)

Risk
factor 3

Risk factor 4 (applicable
for corr)

Corr Eurozone Core
Inflation US Core Inflation > 0.8

Possible errors

The following cases must be satisfied

The view rows should not lead to contradictions (e.g., rows (Eurozone Core Inflation) = 1 %, and (Eurozone Core Inflation) = 2 % would lead to a contradiction)

Volatility is always positive, or zero.

Correlation only gets values from −1 to 1.

With correlation view, (Risk factor 1) ≠ (Risk factor 2) and (Risk factor 3) ≠ (Risk factor 4).

With any relative view, (Risk factor 1) ≠ (Risk factor 3) and with relative correlation, (Risk factor 2) ≠ (Risk factor 4).
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B Variance approximation
Consider the following equation,

√
sx −

√
sy = σxy =⇒ sx − 2√sxsy + sy = σ2

xy,

where sx and sy are variances for assets x and y, respectively. The term σxy is a user defined
constant. The variances, sx and sy, depend on the posterior distribution, ps, s ∈ S. We’d
like to approximate the right-hand-side equation linearly with respect to ps, s ∈ S. We
shall focus on term√

sxsy. First, fix the weighted mean values x̄ and ȳ, and define,

sx =
∑
s∈S

ps(xs − x̄)2 =
∑
s∈S

psas,

sy =
∑
s∈S

ps(ys − ȳ)2 =
∑
s∈S

psbs.

We evaluate partial derivatives with respect to ps, s ∈ S,

∂

∂ps

√
sxsy =

1
2√sxsy

∂

∂ps
(sxsy) =

1
2√sxsy

(
sx

∂sy
∂ps

+ sy
∂sx
∂ps

)
= 1

2√sxsy
(sxbs + syas).

Let, σx and σy, be the standard deviations with prior data. Now we write a Taylor approxi-
mation, where p′s, s ∈ S, is the prior distribution,

√
sxsy ≈ (√sxsy)

∣∣∣∣∣
sx←σ2

x ; sy←σ2
y

+
∑
s∈S

(ps − p′s)
(

∂

∂ps

√
sxsy

) ∣∣∣∣∣
sx←σ2

x ; sy←σ2
y

= σxσy +
1

2σxσy

∑
s∈S

(ps − p′s)(asσ2
y + bsσ

2
x)

= σxσy +
1

2σxσy

∑
s∈S

ps(asσ2
y + bsσ

2
x)−

1
2σxσy

(σ2
xσ

2
y + σ2

yσ
2
x)

=
∑
s∈S

ps
asσ

2
y + bsσ

2
x

2σxσy
.

Finally, we have an approximation for σ2
xy,

σ2
xy ≈

∑
s∈S

ps

(
as + bs −

asσ
2
y + bsσ

2
x

σxσy

)
.
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C Stacked portfolio graphs
The portfolios at the efficient frontier, as a function of expected return. Here, we use the
Markowitz constraints described in Chapter 3.3.2. Note that the case of the Rates down
-view is discarded because the optimization did not yield feasible results with a positive
expected return. Note, that the number of sampled portfolios varies. The graphs include
the whole range of feasible and positive expected returns.
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Self-assessment

1) How closely did the actual implementation of the project follow the initial project plan? Were
there any major departures and, if so, what?

The very implementation of the Entropy Pooling approach, including views processing,
entropy minimization, and Markowitz portfolio optimization was realized without devia-
tions from the original objectives. The work followed the papers given as source material
the way it was supposed at the beginning.

As the project progressed, the importance of correctly handling the input data gainedmuch
more significance than it was initially thought. Not only the mere format of the data was
considered (e.g. the file format and order of columns and rows), but we also understood the
many possibilities of error related tomisunderstandings. As discussed in the text, confusing
percentage returns, percentage points, percentage yields, and basis points is one of such
issues. Another issue is that all the asset scenarios must have percentage returns as units,
so special attention is required when quoting the deltas of bonds and other assets for which
percentage returns of prices are not usually considered.

The suggestions of Aktia concerning the usability and scope of the project in terms of asset
classes also caused some extensions to the original project scope. Namely, the Markowitz
optimization had to bemodified to include asset classes, such as swaps, that were originally
not considered.

2) In what regard was the project successful?

The project clearly expanded the understanding of the team members in the field of port-
folio optimization of financial assets. Especially the shortcomings of the aforementioned
theories have become clear and shed light on the complexity of state-of-the-art portfolio
theory.

In terms of working as a team, everybody participated actively in the work and the com-
munication was frequent. Any problems were addressed swiftly. The team members got
experience in working on a larger code-based project with multiple people working on dif-
ferent parts. Additional reflection on this can also be found in the next part.

The client is also pleased with our co-operation and results. The communication between
the client and the team was effortless, but not very frequent due to clear objectives.

3) In what regard was it less so?

A teammember decided not to continue the course with the team at an early stage, but the
teammanaged to finish the project with the three remaining teammembers. Although this
put more pressure on the rest of the team, it also lead to the remaining members learning
more as the project was divided into larger parts between the team members.

Due to the nature of the project, its implementation, and its extent, the final project is
mostly a proof-of-concept andmay contain very serious flaws if implemented in a business
environment. This is due to not having access to enough data to test a wide enough variety
of different scenarios, inputs, and outcomes. Additionally, some additional features of the
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code were implemented at a late stage and, thus, there was not enough time to properly
test the newest features.

4) What could have been done better, in hindsight? (you may analyze this question from the roles
of the project team, the client, and the teacher(s))

This project was a valuable lesson on working in a team, including an external stakeholder.
It became clear that the largest issues were not connected to the mathematical aspects, but
to the program implementation. Namely, when the function tasks were divided between
teammembers, it was not specified in which format everybody’s functions take inputs and
give outputs. This was a frequent source of confusion and frustration. The solution here
could have been to together decide on the input and output format of each of the main
functions and then go on to let each member decide how their internal part looks by them-
selves.

Communication regarding the course schedule could be clearer. Approximate deadlines
were given at an early stage beforehand, but exact deadlines for both presentation and re-
ports were only given in under a week before the deadlines themselves. This resulted in
hasty reports and presentations. However, we did not miss any deadline, and we’re pleased
with the results.

The team should have scheduled a few more meetings with the client. During the first
meeting, when the team had completed a somewhat working prototype, the client was
able to specify requests and features. These lead to some confusion in the team that might
have been easier to clear up with an in-person meeting with the client.

Some of the teammembers possessed domain knowledge, that is knowledge of finance and
banking, but not all. This made understanding requests and context more challenging for
thosemembers not acquainted with the subject. Where the responsibility lies for acquiring
the aforementioned knowledge is not clear, be it on the teacher, client, or the team itself.
However, it would have been beneficial to be introduced to some of the more uncommon
terms which were quite important for the project (from the point of view of someone who
has not studied or worked in the domain).
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